-rw-r--r-- 3224 libmceliece-20230612/crypto_kem/348864/vec/encrypt.c raw
// 20230102 djb: rename encrypt() as pke_encrypt()
// 20221231 djb: move encrypt.h last for macos portability; tnx thom wiggers
// 20221230 djb: add linker line
// linker define pke_encrypt
/*
This file is for Niederreiter encryption
*/
#include "gf.h"
#include "util.h"
#include "params.h"
#include "uint16_sort.h"
#include "randombytes.h"
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "crypto_declassify.h"
#include "crypto_uint16.h"
#include "crypto_uint32.h"
#include "encrypt.h"
static inline crypto_uint16 uint16_is_smaller_declassify(uint16_t t,uint16_t u)
{
crypto_uint16 mask = crypto_uint16_smaller_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
static inline crypto_uint32 uint32_is_equal_declassify(uint32_t t,uint32_t u)
{
crypto_uint32 mask = crypto_uint32_equal_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
/* output: e, an error vector of weight t */
static void gen_e(unsigned char *e)
{
int i, j, eq, count;
union
{
uint16_t nums[ SYS_T*2 ];
unsigned char bytes[ SYS_T*2 * sizeof(uint16_t) ];
} buf;
uint16_t ind[ SYS_T ];
uint64_t e_int[ (SYS_N+63)/64 ];
uint64_t one = 1;
uint64_t mask;
uint64_t val[ SYS_T ];
while (1)
{
randombytes(buf.bytes, sizeof(buf));
for (i = 0; i < SYS_T*2; i++)
buf.nums[i] = load_gf(buf.bytes + i*2);
// moving and counting indices in the correct range
count = 0;
for (i = 0; i < SYS_T*2 && count < SYS_T; i++)
if (uint16_is_smaller_declassify(buf.nums[i],SYS_N))
ind[ count++ ] = buf.nums[i];
if (count < SYS_T) continue;
// check for repetition
uint16_sort(ind, SYS_T);
eq = 0;
for (i = 1; i < SYS_T; i++)
if (uint32_is_equal_declassify(ind[i-1],ind[i]))
eq = 1;
if (eq == 0)
break;
}
for (j = 0; j < SYS_T; j++)
val[j] = one << (ind[j] & 63);
for (i = 0; i < (SYS_N+63)/64; i++)
{
e_int[i] = 0;
for (j = 0; j < SYS_T; j++)
{
mask = i ^ (ind[j] >> 6);
mask -= 1;
mask >>= 63;
mask = -mask;
e_int[i] |= val[j] & mask;
}
}
for (i = 0; i < (SYS_N+63)/64 - 1; i++)
{ store8(e, e_int[i]); e += 8; }
for (j = 0; j < (SYS_N % 64); j+=8)
e[ j/8 ] = (e_int[i] >> j) & 0xFF;
}
/* input: public key pk, error vector e */
/* output: syndrome s */
static void syndrome(unsigned char *s, const unsigned char *pk, unsigned char *e)
{
uint64_t b;
const uint64_t *pk_ptr;
const uint64_t *e_ptr = ((uint64_t *) (e + SYND_BYTES));
int i, j;
//
for (i = 0; i < SYND_BYTES; i++)
s[i] = e[i];
for (i = 0; i < PK_NROWS; i++)
{
pk_ptr = ((uint64_t *) (pk + PK_ROW_BYTES * i));
b = 0;
for (j = 0; j < PK_NCOLS/64; j++)
b ^= pk_ptr[j] & e_ptr[j];
b ^= ((uint32_t *) &pk_ptr[j])[0] & ((uint32_t *) &e_ptr[j])[0];
b ^= b >> 32;
b ^= b >> 16;
b ^= b >> 8;
b ^= b >> 4;
b ^= b >> 2;
b ^= b >> 1;
b &= 1;
s[ i/8 ] ^= (b << (i%8));
}
}
void pke_encrypt(unsigned char *s, const unsigned char *pk, unsigned char *e)
{
gen_e(e);
#ifdef KAT
{
int k;
printf("encrypt e: positions");
for (k = 0;k < SYS_N;++k)
if (e[k/8] & (1 << (k&7)))
printf(" %d",k);
printf("\n");
}
#endif
syndrome(s, pk, e);
}