-rw-r--r-- 2784 libmceliece-20230612/crypto_kem/460896/avx/encrypt.c raw
// 20230102 djb: rename encrypt() as pke_encrypt()
// 20221231 djb: move encrypt.h last for macos portability; tnx thom wiggers
// 20221230 djb: add linker lines
// linker define pke_encrypt
// linker use syndrome_asm
#define syndrome_asm CRYPTO_SHARED_NAMESPACE(syndrome_asm)
#define _syndrome_asm _CRYPTO_SHARED_NAMESPACE(syndrome_asm)
/*
This file is for Niederreiter encryption
*/
#include "util.h"
#include "params.h"
#include "int32_sort.h"
#include "randombytes.h"
#include <stdint.h>
#include "crypto_declassify.h"
#include "crypto_uint16.h"
#include "crypto_uint32.h"
#include "encrypt.h"
static inline crypto_uint16 uint16_is_smaller_declassify(uint16_t t,uint16_t u)
{
crypto_uint16 mask = crypto_uint16_smaller_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
static inline crypto_uint32 uint32_is_equal_declassify(uint32_t t,uint32_t u)
{
crypto_uint32 mask = crypto_uint32_equal_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
/* input: public key pk, error vector e */
/* output: syndrome s */
extern void syndrome_asm(unsigned char *s, const unsigned char *pk, unsigned char *e);
/* output: e, an error vector of weight t */
static void gen_e(unsigned char *e)
{
int i, j, eq, count;
union
{
uint16_t nums[ SYS_T*2 ];
unsigned char bytes[ SYS_T*2 * sizeof(uint16_t) ];
} buf;
int32_t ind[ SYS_T ]; // can also use uint16 or int16
uint64_t e_int[ (SYS_N+63)/64 ];
uint64_t one = 1;
uint64_t mask;
uint64_t val[ SYS_T ];
while (1)
{
randombytes(buf.bytes, sizeof(buf));
for (i = 0; i < SYS_T*2; i++)
buf.nums[i] = load_gf(buf.bytes + i*2);
// moving and counting indices in the correct range
count = 0;
for (i = 0; i < SYS_T*2 && count < SYS_T; i++)
if (uint16_is_smaller_declassify(buf.nums[i],SYS_N))
ind[ count++ ] = buf.nums[i];
if (count < SYS_T) continue;
// check for repetition
int32_sort(ind, SYS_T);
eq = 0;
for (i = 1; i < SYS_T; i++)
if (uint32_is_equal_declassify(ind[i-1],ind[i]))
eq = 1;
if (eq == 0)
break;
}
for (j = 0; j < SYS_T; j++)
val[j] = one << (ind[j] & 63);
for (i = 0; i < (SYS_N+63)/64; i++)
{
e_int[i] = 0;
for (j = 0; j < SYS_T; j++)
{
mask = i ^ (ind[j] >> 6);
mask -= 1;
mask >>= 63;
mask = -mask;
e_int[i] |= val[j] & mask;
}
}
for (i = 0; i < (SYS_N+63)/64; i++)
{ store8(e, e_int[i]); e += 8; }
}
/* input: public key pk */
/* output: error vector e, syndrome s */
void pke_encrypt(unsigned char *s, const unsigned char *pk, unsigned char *e)
{
gen_e(e);
#ifdef KAT
{
int k;
printf("encrypt e: positions");
for (k = 0;k < SYS_N;++k)
if (e[k/8] & (1 << (k&7)))
printf(" %d",k);
printf("\n");
}
#endif
syndrome_asm(s, pk, e);
}