-rw-r--r-- 5529 libmceliece-20240726/crypto_kem/8192128/vec/pk_gen.c raw
/*
  This file is for public-key generation
*/
// 20240715 djb: more use of crypto_*_mask
// 20240508 djb: switch to crypto_sort_int64
// 20221231 djb: more 0 initialization to clarify data flow; tnx thom wiggers
// 20221230 djb: add linker lines
// linker define pk_gen
// linker use fft vec_inv vec_mul
#include "pk_gen.h"
#include "controlbits.h"
#include "crypto_sort_int64.h"
#include "params.h"
#include "benes.h"
#include "util.h"
#include "fft.h"
#include "crypto_declassify.h"
#include "crypto_uint64.h"
static crypto_uint64 uint64_is_equal_declassify(uint64_t t,uint64_t u)
{
  crypto_uint64 mask = crypto_uint64_equal_mask(t,u);
  crypto_declassify(&mask,sizeof mask);
  return mask;
}
static crypto_uint64 uint64_is_zero_declassify(uint64_t t)
{
  crypto_uint64 mask = crypto_uint64_zero_mask(t);
  crypto_declassify(&mask,sizeof mask);
  return mask;
}
#include <stdint.h>
static void de_bitslicing(uint64_t * out, const vec in[][GFBITS])
{
	int i, j, r;
	for (i = 0; i < (1 << GFBITS); i++)
		out[i] = 0 ;
	for (i = 0; i < 128; i++)
	for (j = GFBITS-1; j >= 0; j--)
	for (r = 0; r < 64; r++) 
	{ 
		out[i*64 + r] <<= 1; 
		out[i*64 + r] |= (in[i][j] >> r) & 1; 
	}
}
static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t * in)
{
	int i, j, r;
	for (i = 0; i < 128; i++)
	{
		for (j = 0;j < GFBITS;++j) out0[i][j] = out1[i][j] = 0;
		for (j = GFBITS-1; j >= 0; j--)
		for (r = 63; r >= 0; r--)
		{
			out1[i][j] <<= 1;
			out1[i][j] |= (in[i*64 + r] >> (j + GFBITS)) & 1;
		}
        
		for (j = GFBITS-1; j >= 0; j--)
		for (r = 63; r >= 0; r--)
		{
			out0[i][GFBITS-1-j] <<= 1;
			out0[i][GFBITS-1-j] |= (in[i*64 + r] >> j) & 1;
		}
	}
}
int pk_gen(unsigned char * pk, const unsigned char * irr, uint32_t * perm, int16_t * pi)
{
	int i, j, k;
	int row, c, d;
	
	uint64_t mat[ PK_NROWS ][ 128 ];
	uint64_t ops[ PK_NROWS ][ PK_NROWS / 64 ];
	uint64_t mask;	
	vec irr_int[2][ GFBITS ];
	vec consts[ 128 ][ GFBITS ];
	vec eval[ 128 ][ GFBITS ];
	vec prod[ 128 ][ GFBITS ];
	vec tmp[ GFBITS ];
	uint64_t list[1 << GFBITS];
	uint64_t one_row[ PK_NCOLS/64 ];
	// compute the inverses 
	irr_load(irr_int, irr);
	fft(eval, irr_int);
	vec_copy(prod[0], eval[0]);
	for (i = 1; i < 128; i++)
		vec_mul(prod[i], prod[i-1], eval[i]);
	vec_inv(tmp, prod[127]);
	for (i = 126; i >= 0; i--)
	{
		vec_mul(prod[i+1], prod[i], tmp);
		vec_mul(tmp, tmp, eval[i+1]);
	}
	vec_copy(prod[0], tmp);
	// fill matrix 
	de_bitslicing(list, prod);
	for (i = 0; i < (1 << GFBITS); i++)
	{	
		list[i] <<= GFBITS;
		list[i] |= i;	
		list[i] |= ((uint64_t) perm[i]) << 31;
	}
	crypto_sort_int64(list, 1 << GFBITS);
	for (i = 1; i < (1 << GFBITS); i++)
		if (uint64_is_equal_declassify(list[i-1] >> 31,list[i] >> 31))
			return -1;
	to_bitslicing_2x(consts, prod, list);
	for (i = 0; i < (1 << GFBITS); i++)
		pi[i] = list[i] & GFMASK;
	for (j = 0; j < (PK_NROWS + 63)/64; j++)
	for (k = 0; k < GFBITS; k++)
		mat[ k ][ j ] = prod[ j ][ k ];
	for (i = 1; i < SYS_T; i++)
	for (j = 0; j < (PK_NROWS + 63)/64; j++)
	{
		vec_mul(prod[j], prod[j], consts[j]);
		for (k = 0; k < GFBITS; k++)
			mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
	}
	// gaussian elimination to obtain an upper triangular matrix 
	// and keep track of the operations in ops
	for (i = 0; i < PK_NROWS / 64; i++)
	for (j = 0; j < 64; j++)
	{
		row = i*64 + j;			
		for (c = 0; c < PK_NROWS / 64; c++)
			ops[ row ][ c ] = 0;
	}
	for (i = 0; i < PK_NROWS / 64; i++)
	for (j = 0; j < 64; j++)
	{
		row = i*64 + j;			
		ops[ row ][ i ] = 1;
		ops[ row ][ i ] <<= j;
	}
	for (i = 0; i < PK_NROWS / 64; i++)
	for (j = 0; j < 64; j++)
	{
		row = i*64 + j;			
		for (k = row + 1; k < PK_NROWS; k++)
		{
			mask = ~crypto_uint64_bitmod_mask(mat[ row ][ i ], j);
			for (c = 0; c < PK_NROWS / 64; c++)
			{
				mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
				ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
			}
		}
		mask = crypto_uint64_bitmod_mask(mat[ row ][ i ], j);
                if ( uint64_is_zero_declassify(mask) ) // return if not systematic
		{
			return -1;
		}
		for (k = row+1; k < PK_NROWS; k++)
		{
			mask = crypto_uint64_bitmod_mask(mat[ k ][ i ], j);
			for (c = 0; c < PK_NROWS / 64; c++)
			{
				mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
				ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
			}
		}
	}
	// computing the lineaer map required to obatin the systematic form
	for (i = PK_NROWS / 64 - 1; i >= 0; i--)
	for (j = 63; j >= 0; j--)
	{
		row = i*64 + j;			
		for (k = 0; k < row; k++)
		{
			{
				mask = crypto_uint64_bitmod_mask(mat[ k ][ i ], j);
				for (c = 0; c < PK_NROWS / 64; c++)
					ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
			}
		}
	}
	// apply the linear map to the non-systematic part
	for (j = (PK_NROWS + 63)/64; j < 128; j++)
	for (k = 0; k < GFBITS; k++)
		mat[ k ][ j ] = prod[ j ][ k ];
	for (i = 1; i < SYS_T; i++)
	for (j = (PK_NROWS + 63)/64; j < 128; j++)
	{
		vec_mul(prod[j], prod[j], consts[j]);
		for (k = 0; k < GFBITS; k++)
			mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
	}
	for (i = 0; i < PK_NROWS / 64; i++)
	for (j = 0; j < 64; j++)
	{
		row = i*64 + j;			
		for (k = 0; k < PK_NCOLS/64; k++)
			one_row[ k ] = 0;
		for (c = 0; c < PK_NROWS / 64; c++)
		for (d = 0; d < 64; d++)
		{
			mask = crypto_uint64_bitmod_mask(ops[ row ][ c ], d);
			for (k = 0; k < PK_NCOLS/64; k++)
				one_row[ k ] ^= mat[ c*64 + d ][ k + PK_NROWS/64 ] & mask;
		}
		for (k = 0; k < PK_NCOLS/64; k++)
		{
			store8(pk, one_row[ k ]);
			pk += 8;		
		}
	}
	//
	return 0;
}